@Air Compressor
2025-04-23

Will compressed air pressure affect the volume of air per minute

After the compressed air is decompressedIt affects the volume of air per minute, specifically manifested asReduced air volume。The following is a detailed explanation and technical solution:

1. The principle of reducing pressure leads to a decrease in air volume

  1. gas volume expansion
    according to the ideal gas law , when pressure () when decreasing, if the temperature () constant, the gas volume () It will expand. This means that after decompression, the number of gas molecules per unit volume decreases.

  2. Conservation of mass flow
    Mass flow before and after the pressure reducing valve (, among them For density, is the flow rate, is the cross-sectional area) needs to be consistent. Due to decompression Drop, flow rate or cross-sectional area Must be increased to maintain , but usually the cross-sectional area is fixed, so the flow rate increases. However, if the demand pressure of downstream equipment decreases, the actual effective gas volume (the volume of gas available per unit of time) will still decrease.

  3. energy loss
    The decompression process is accompanied by a loss of pressure energy ( Pressure drop), this part of energy is converted into heat or sound energy, resulting in a decrease in system efficiency and indirectly affecting the gas output.

2. Quantitative impact of decompression on gas volume

  • theoretical calculation
    Assuming that the pressure before decompression is , the pressure after decompression is , if the temperature is constant, the change ratio of air volume (volume flow) is:

For example, if the pressure is reduced from 0.8 MPa to 0.4 MPa, the theoretical gas volume is reduced by 50%.

  • practical factors
    Pipeline resistance, leaks, temperature changes, etc. will cause the actual gas volume to be reduced higher than the theoretical value.

3. Technical solutions

  1. Optimize pressure reducing valve selection
    • Choose a pressure reducing valve with low pressure drop and high flow to reduce energy losses.
    • A proportional pressure reducing valve is used to automatically adjust the opening according to downstream demand to balance pressure and flow.
  2. Improved system efficiency
    • pipeline design: Shorten pipe length, increase pipe diameter, reduce elbows, and reduce frictional resistance.
    • leakage management: Regularly detect and repair leakage points to avoid loss of ineffective gas volume.
    • Drying and filtration: High-efficiency filters and dryers reduce the impact of pressure drop from impurities and moisture.
  3. Pressure grading utilization
    • Supply air separately to high-pressure demand equipment, and centrally reduce pressure to low-pressure demand equipment to avoid energy waste caused by global decompression.
  4. intelligent control system
    • Sensors monitor pressure and flow in real time, dynamically adjust air compressor output and pressure reducing valve opening to match actual gas demand.

4. Industry practice cases

  • Medical gas supply system
    The central oxygen supply system adopts multi-stage pressure reduction. Oxygen is reduced from the high-pressure storage tank (15 MPa) to the equipment working pressure (0.4 MPa) through the pressure reduction valve. Intelligent control ensures stable terminal gas volume.

  • industrial automation
    In the pneumatic robot air supply system, a proportional pressure reducing valve is used to dynamically adjust the pressure, which not only meets the motion control accuracy, but also reduces energy consumption when unloaded.

summary

It is a physical rule to reduce the volume of compressed air after decompression, but by optimizing system design, equipment selection and intelligent control, its impact can be minimized and efficient gas supply can be achieved. In practical applications, targeted plans need to be formulated based on specific working conditions (such as pressure levels, flow requirements, and pipeline layout).

Welcome!

Related Articles:
@Air Compressor
2025-04-22

What fields use mobile air compressors

Due to its portability, flexibility and efficiency, mobile air compressors are widely used in the following fields: 1. Core application areas Mining and mining: Drilling and blasting: Driving down-the-hole drilling rigs to break rock, providing compressed air to generate impact energy. Mining…

@Air Compressor
2025-07-02

What is the normal pressure in the factory’s compressed air pipes?

The pressure setting of the factory’s compressed air pipeline needs to take into account equipment requirements, pipeline losses and safety margins. Its normal range varies depending on the industry and gas consumption scenarios. The following is an explanation from four aspects: pressure standards, setting basis, industry differences and operation and maintenance recommendations.

@Air Compressor
2025-05-07

Is the air compressor nameplate displacement at normal pressure or after compression?

Analysis of air compressor nameplate exhaust volume: Measuring equipment production capacity with “normal breathing” The exhaust volume marked on the air compressor nameplate is like using “normal breathing volume” to measure equipment production capacity. Its definition needs to be understood from the following three Dimensions: 1. Core definition: …

@Air Compressor
2025-04-22

Cooling method of co2 screw compressor unit

The cooling methods of CO ˇ screw compressor units need to be specially designed for their high-pressure and high-temperature operating characteristics. Common cooling solutions can be divided into four categories, each with its technical characteristics and application scenarios: 1. Principle of indirect cooling (water/air cooling) water cooling system…

@Air Compressor
2025-05-13

How to treat compressed air for medical use

Official explanation on medical compressed air treatment technology In the medical field, compressed air is a key power source and process medium, and its quality is directly related to patient safety and the operating reliability of medical equipment. After systematically sorting out industry specifications and technical characteristics, now…