@Air Compressor
2025-07-01

Pressure vessel service life regulations

Code for Management of Service Life of Pressure Vessels

Pressure vessels are special equipment that carries gases or liquids and withstands a certain pressure. Their service life management must follow the principles of scientific evaluation and standardized maintenance to ensure the safe operation of the equipment. The following are management guidelines based on industry practices and technical standards:

1. Design life and legal inspection cycle

  1. Design life definition
    The design life of pressure vessels is usually 10-20 years, which is comprehensively determined by the design unit based on material properties, corrosion rate, fatigue strength and other parameters. For example, the design life of carbon steel containers under normal operating conditions is about 15 years, and the design life of stainless steel containers can be extended to 20 years due to their better corrosion resistance.

  2. Legal inspection requirements
    According to the “Safety Technical Supervision Regulations for Fixed Pressure Vessels”, equipment needs to be supervised and inspected regularly:

  • Comprehensive inspection cycle: 3-6 years/time (determined based on safety status level)
  • Withstand pressure test cycle: The maximum period shall not exceed 9 years (only after passing the comprehensive inspection)

2. Key factors affecting service life

  1. medium corrosiveness
  • Corrosive media (such as acid, alkali, and salt solutions) will accelerate the thickness of the container wall, and life needs to be extended by upgrading materials or increasing corrosion margins. For example, in a chloride ion environment, the annual corrosion rate of ordinary carbon steel can reach 0.3 mm, while the corrosion rate of stainless steel can be controlled within 0.01 mm.
  1. Volatility of operating conditions
  • Frequent pressure and temperature fluctuations can lead to metal fatigue. Experimental data show that after the number of pressure cycles exceeds 10, the probability of fatigue crack initiation in the container increases significantly.
  1. Maintenance quality
  • Maintenance measures such as regular internal and external inspections, wall thickness measurements, and safety accessory calibration can extend the service life of the equipment. For example, magnetic particle testing is carried out every two years, and more than 90% of surface cracks can be discovered in advance.

3. Service life evaluation and life extension management

  1. periodic evaluation mechanism
  • Risk assessment is carried out every 3 years, with key inspections:
    • Wall thickness reduction (remaining wall thickness ≥ 90% of the design wall thickness)
    • Weld quality (no excessive defects are displayed)
    • Support settlement (verticality deviation ≤H/1000)
  1. Extension approval process
  • After reaching the design life, if you need to continue using it, you need to entrust a professional organization to:
    • Re-inspection of material properties (tensile strength, impact toughness)
    • Residual life prediction (based on fracture mechanics analysis)
    • Safety factor calculation (not less than 1.5 times the original design value)

4. Scrap disposal standards

When one of the following circumstances occurs, use should be stopped immediately and scrapped:

  1. Wall thickness corrosion exceeds the design wall thickness by 30%
  2. Presence of penetrating cracks or deformation exceeding 1% of container diameter
  3. Safety attachment fails and cannot be repaired
  4. The assessed remaining life is less than 1 inspection cycle

5. Enterprise implementation suggestions

  1. Establish equipment files to record full life cycle data such as design parameters, inspection reports, and maintenance records.
  2. Formulate an annual inspection plan, giving priority to the use of advanced non-destructive testing technologies such as acoustic emission testing and phased array ultrasound.
  3. For equipment close to the design life, a 20% inspection period is reserved as a buffer period to avoid the risk of sudden shutdown.
  4. Carry out special training for operators, focusing on the emergency response process for abnormal conditions such as overpressure, overheating, and leaks.

conclusion
The safe operation of pressure vessels must be based on scientific management, and economic operation under the premise of controllable risks is achieved through design life control, statutory inspection execution, and intelligent monitoring technology application. Enterprises should establish a full-cycle management system of “prevention-monitoring-evaluation-disposal” to ensure that equipment can maximize its value on the premise of safety and compliance.

Welcome!

Related Articles:
@Air Compressor
2025-06-18

How often does the inverter air compressor unload normally?

Inverter air compressors achieve dynamic matching of gas production and gas demand by intelligently adjusting motor speed, and their unloading frequency reflects system operating efficiency and equipment health. The following describes the unloading cycle from three aspects: technical principles, influencing factors and optimization suggestions…

@Air Compressor
2025-04-11

How to calculate the gas consumption of factory equipment

Calculating the gas consumption of plant equipment needs to be carried out in steps. The following systematic methods and practical formulas are provided: 1. Statistical equipment information list list: List all gas consumption equipment (such as pneumatic tools, control valves, purging devices, etc.) and record the following parameters: …

@Air Compressor
2025-05-23

Why is the higher the degree of automation, the greater the demand for compressed air

Analysis of the technical correlation between the improvement of automation and the growth of compressed air demand In the process of industrial automation, the demand for compressed air shows a positive correlation with the level of automation. This phenomenon stems from the dynamic characteristics, control logic and energy efficiency of the automation system.

@Air Compressor
2025-05-28

How often should the butter of the air compressor motor be changed?

Analysis of grease replacement cycle of air compressor motor The grease (grease) replacement cycle of air compressor motor bearings is a key link in equipment maintenance, which directly affects the operating stability and service life of the equipment. The following are from the grease action, replacement cycle…

@Air Compressor
2025-04-11

Why are industrial compressed gases at a pressure of 0.7mpa?

Industrial compressed gas generally uses a pressure of 0.7MPa (about 7 kg-force/cm2), which is the best choice after comprehensive efficiency, cost, safety and equipment compatibility. The specific reasons are as follows: 1. Energy efficiency balance air compressor efficiency curve is active…